14 research outputs found

    Unconventional charge density wave driven by electron-phonon coupling

    Full text link
    We report our study on unconventional charge density waves (UCDW) (i.e. a charge density wave with wavevector dependent gap) in pure quasi-one dimensional conductors. We develop a new possible mechanism of establishment of such a low temperature phase, in which the driving force of the phase transition is the electron-phonon interaction with coupling depending on both the momentum transfer q and the momentum of the scattered electron k. Mean field treatment is applied to obtain the excitation spectrum, correlation functions such as the density correlator and the optical conductivity, and the effective mass of the phase excitation. The fluctuation of the order parameter leads to the sliding of the UCDW as a whole. In the absence of impurities, we calculated the effect of this fluctuation on the optical properties. The inclusion of the collective mode significantly alters the optical conductivity, and leads to an effective mass which is nonmonotonic in temperature as opposed to conventional CDWs.Comment: 11 figures, 13 pages, Revtex4 styl

    Nemkonvencionális kondenzátumok szilárdtestekben = Unconventional Condensates in Solids

    Get PDF
    A kutatás során a kölcsönható elektronrendszerek nemkonvencionális kondenzátumokkal jellemezhető alacsony hőmérsékleti fázisait vizsgáltuk, különös tekintettel a szupravezető és sűrűséghullám állapotokra. Egy alkalmasan választott átlagtér elmélet segítségével meghatároztunk számos, kísérleti relevanciával bíró fizikai mennyiséget ezekben a rendszerekben. Számításokat végeztünk többek között a nemkonvencionális sűrűséghullámok mágneses térbeli transzport tulajdonságaira vonatkozóan, megvizsgáltuk a Raman szórás és az elektron-fonon csatolás jellegzetességeit, valamint tanulmányoztuk a kondenzátum és különféle szennyezők kölcsönhatását. Eredményeinket összevetettük több magashőmérsékletű szupravezetőn, szerves töltésátviteli són és nehézfermionos anyagon végzett mérésekkel, és a legtöbb esetben nem csak kvalitatív, hanem kvantitatív egyezést találtunk. Vizsgálataink tovább erősítették azt a feltételezést, hogy az említett anyagok fázisdiagrammjának egyes tartományaiban észlelt anomális viselkedés egy nemkonvencionális sűrűséghullám kondenzátum jelenlétének tulajdonítható. | We have investigated the low temperature phases of the interacting electron systems characterized by unconventional condensates. We payed particular attention to superconductors and density waves. Using a suitable mean field theory we have determined a number of physical quantities of experimental interest in these systems. We have calculated among others the magnetotransport properties of unconventional density waves, investigated the peculiarities of Raman scattering and electron-phonon coupling, and studied the interaction of the condensate with various kinds of impurities. We have compared our results with measurements on several high temperature superconductors, organic charge transfer salts and heavy fermion materials, and in most cases we have found not only qualitative, but quantitative agreement. Our investigations have further strengthened the case, that the anomalous behavior in certain regions of the phase diagram of these materials is due to an unconventional density wave condensate

    Local density of states and Friedel oscillations around a non-magnetic impurity in unconventional density wave

    Full text link
    We present a mean-field theoretical study on the effect of a single non-magnetic impurity in quasi-one dimensional unconventional density wave. The local scattering potential is treated within the self-consistent TT-matrix approximation. The local density of states around the impurity shows the presence of resonant states in the vicinity of the Fermi level, much the same way as in dd-density waves or unconventional superconductors. The assumption for different forward and backscattering, characteristic to quasi-one dimensional systems in general, leads to a resonance state that is double peaked in the pseudogap. The Friedel oscillations around the impurity are also explored in great detail, both within and beyond the density wave coherence length Îľ0\xi_0. Beyond Îľ0\xi_0 we find power law behavior as opposed to the exponential decay of conventional density wave. The entropy and specific heat contribution of the impurity are also calculated for arbitrary scattering strengths.Comment: 13 pages, 4 figure

    The pseudogap phase in (TaSe_4)_2I

    Full text link
    We have developed the mean-field theory of coexisting charge-density waves (CDW) and unconventional charge-density waves (UCDW). The double phase transition manifests itself in the thermodynamic quantities and in the magnetic response, such as spin susceptibility and spin-lattice relaxation rate. Our theory applies to quasi-one dimensional (TaSe_4)_2I, where above the CDW transition, thermal fluctuations die out rapidly, but robust pseudogap behaviour is still detected. We argue, that the fluctuations are suppressed due to UCDW, which partially gaps the Fermi surface, and causes non-Fermi-liquid (pseudogap) behaviour.Comment: 7 pages, 6 figure

    Dirac fermionok szilárdtestekben = Dirac fermions in solids

    Get PDF
    Kutatásaink során olyan szilárdtestek viselkedésének elméleti leirását tűztük ki célul, melyekben az elektronok dinamikáját egy a Dirac egyenlethez hasonló összefüggés határozza meg. Tömeg nélküli fermionok energia-impulzus összefüggése igy lineáris lesz, melynek jelenleg messze legismertebb példája a szűk évtizede fölfedezett grafén. Ennek az anyagnak rezonancia módszerekkel történő vizsgálata kapcsán kiszámoltuk az NMR élettartamot és a rezonancia helyének eltolódását, valamint meghatároztuk az elektronok spin relaxációs tulajdonságait. A kisérletekkel való összevetés az intrinsic spin-pálya csatolás dominanciájára utal. Megvizsgáltuk a vezetési tulajdonságokat erős elektromos tér esetén, és azt találtuk, hogy a rendszerben folyó áram az elektromos tér 3/2-dik hatványával nő, melyet kisérletek is igazoltak. Tanulmányoztuk továbbá a grafénbeli Friedel-oszcilláció jellegzetességeit erősen lokalizált szennyező körül, és a lassan lecsengő, hosszú hullámhosszú oszcillációk mellett azonositottunk egy rövid hullámhosszú mintázatot is. Meghatároztuk a felületi akusztikus hullámok segitségével mérhető hullámszám függő vezetőképességet, valamint az állapotsűrűség megváltozását szennyezők hatására. Megállapitottuk, hogy az elektronok közötti taszitás miatt grafénban bekövetkező fém-szigetelő átmenet kritikus exponensei jelentősen eltérnek a Landau-elmélet értékeitől. | The aim of our research was to describe theoretically the behavior of solids in which the dynamics of electrons is governed by a formula similar to the Dirac equation. The energy-momentum relation of massless fermions will thus be linear, the most familiar example of which is graphene discovered within the past decade. In connection with the investigation of this material by resonance methods we calculated the NMR lifetime and the shift in the position of the resonance, and determined the spin relaxation properties of the electrons. Comparison with experiments points to the dominance of intrinsic spin-orbit coupling. We investigated the conductance properties in strong electric fields, and found that the current grows wit the 3/2 power of the electric field, which was confirmed by experiments. Moreover we studied the characteristics of Friedel oscillations in graphene around a well localized impurity, and in addition to the slowly decaying long wavelength oscillations we identified a short wavelength pattern as well. We determined the wavenumber dependent conductivity measurable by surface acoustic waves, and the change in the density of states due to impurities. We found that the critical exponents of the metal-insulator transition due to repulsion between electrons in graphene are significantly different from those given by the Landau theory

    Unconventional density wave in CeCoIn_5?

    Full text link
    Very recently large Nernst effect and Seebeck effect were observed above the superconducting transition temperature 2.3K in a heavy fermion superconductor CeCoIn_5. We shall interpret this large Nernst effect in terms of unconventional density wave (UDW), which appears around T=18K. Also the temperature dependence of the Seebeck coefficient below T=18K is described in terms of UDW. Another hallmark for UDW is the angular dependent magnetoresistance, which should be readily accessible experimentally.Comment: 4 pages, 7 figure

    Pseudogap enhancement due to magnetic impurities in d-density waves

    Full text link
    We study the effect of quantum magnetic impurities on d-wave spin density waves (d-SDW). The impurity spins are aligned coherently according to the spin space anisotropy of the condensate. Both the order parameter and transition temperature increases due to the coherent interplay between magnetic scatterers and d-SDW. This can explain the recent experimental data on the pseudogap enhancement of Ni substituted NdBa_2{Cu_{1-y}Ni_y}O_6.8 from Pimenov et al. (Phys. Rev. Lett. 94, 227003 (2005)).Comment: 4 pages, 3 figure

    Spin- és töltésdinamika szilárd testekben és nanoszerkezetekben = Spin and charge dynamics in solids and nanostructures

    Get PDF
    Napjaink szilárdtestfizikai kutatásainak központi területét jelentik azok a kvantum-jelenségek, amelyekben az elektron töltése és spinje egyaránt lényeges szerepet játszik. A projekt keretében ilyen jelenségeket tanulmányoztunk hagyományos módszerekkel (ESR spektroszkópia, elektromos és mágneses mérések), valamint olyan új spektroszkópia eljárásokkal, melyek nanotechnológiai megoldásokat alkalmaznak (alagút- és pont-kontaktus-spektroszkópia, Andrejev-spektroszkópia). A kísérleti és elméleti módszerekkel vizsgált anyagcsaládok egzotikus alapállapottal rendelkező erősen anizotrop kölcsönható elektronrendszerek, mint például: i, szupravezető átalakulás közelében lévő kuprátok, ii., ritkaföldfém vegyületek nem-konvencionális sűrűséghullámai, illetve iii., átmeneti fém oxidok a kvantum kritikus pont tartományában. A legfontosabb új eredmények a versengő kölcsönhatású rendszerek fázisdiagramjára, az antiferromágneses anyagok spin-gerjesztéseinek közvetlen meghatározására, valamint ferromágneses anyagokban a töltéshordozók spin-polarizáltságának mérésére vonatkoznak. Ez utóbbi, az alapvetően új nanotechnológiai méréstechnika alkalmazása mellett, a modern kvantum elméletek nanoszerkezetekre történő kiterjesztését is igényelte. Az eredményeket nívós nemzetközi folyóiratokban közöltük. A 40 kiemelt publikáció között 6 db. Physical Review Letters és 27 db. Physical Review B cikk szerepel. | Electrons have spin and charge, and the quantum phenomena where both of these properties are relevant represent the hottest subjects in condensed matter research today. We investigated these features by bulk characterization methods (ESR spectroscopy, transport and magnetization measurements) supplemented with novel spectroscopic ones utilizing nanotechnology (tunneling-, point-contact, and Andreev-spectroscopy). Highly anisotropic interacting electron systems with exotic ground states have been studied both experimentally and theoretically. The prime examples are: i., cuprates in the vicinity of a superconducting transition, ii., rare-earth compounds with unconventional density waves and iii., transition metal oxides close to a quantum critical point. The most important new results deal with the determination of phase diagrams for systems of competing interactions, direct measurement of spin excitations in antiferromagtic structures, and determination of spin polarization of the charge carriers in ferromagnetic structures. The latter required novel nanoscale techniques, and the application of quantum theories for nanostructures. The results were published leading scientific journals. The top 40 publication include 6 Physical Review Letters and 27 Physical Review B papers

    Gapped optical excitations from gapless phases: imperfect nesting in unconventional density waves

    Full text link
    We consider the effect of imperfect nesting in quasi-one-dimensional unconventional density waves in the case, when the imperfect nesting and the gap depends on the same wavevector component. The phase diagram is very similar to that in a conventional density wave. The density of states is highly asymmetric with respect to the Fermi energy. The optical conductivity at T=0 remains unchanged for small deviations from perfect nesting. For higher imperfect nesting parameter, an optical gap opens, and considerable amount of spectral weight is transferred to higher frequencies. This makes the optical response of our system very similar to that of a conventional density wave. Qualitatively similar results are expected in d-density waves.Comment: 8 pages, 7 figure

    Impurity scattering in unconventional density waves: non-crossing approximation for arbitrary scattering rate

    Full text link
    We present a detailed theoretical study on the thermodynamic properties of impure quasi-one dimensional unconventional charge-, and spin-density waves in the framework of mean-field theory. The impurities are of the ordinary non-magnetic type. Making use of the full self-energy that takes into account all ladder-, and rainbow-type diagrams, we are able to calculate the relevant low temperature quantities for arbitrary impurity concentration and scattering rates. These are the density of states, specific heat and the shift in the chemical potential. Our results therefore cover the whole parameter space: they include both the self-consistent Born and the resonant unitary limits, and most importantly give exact results in between.Comment: 11 pages, 8 figure
    corecore